Tetrahedron Letters 51 (2010) 5399-5401

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis and spin trapping properties of 1,1-dimethyl-3-(trifluoromethyl)-1*H*-isoindole N-oxide

Bunpei Hatano*, Katsunori Miyoshi, Haruna Sato, Tomohiro Ito, Tateaki Ogata, Tatsuro Kijima

Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

ARTICLE INFO

Article history: Received 21 July 2010 Accepted 29 July 2010 Available online 5 August 2010

ABSTRACT

We have achieved an efficient synthesis of 1,1-dimethyl-3-(trifluoromethyl)-1*H*-isoindole N-oxide ($\mathbf{2}$) in 39% yield by seven steps from 2-bromobenzoic acid ($\mathbf{3}$). This compound serves as a spin trap reagent, giving a strong and stable ESR signal of the radical adduct of $\mathbf{2}$ in the presence of *i*-amyloxy radical generated by UV photolysis of *i*-amyl nitrite.

© 2010 Elsevier Ltd. All rights reserved.

Free radicals such as reactive oxygen species may be involved in a variety of biological processes which are associated with certain diseases, such as cancer, heart attack, and Alzheimer's disease and aging.¹ The investigation of free radicals in biological systems serves to elucidate diseases mechanisms. In decades, the effect of free radicals on biological systems has been revealed by ESR or ESR-CT technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap reagent.² Several issues, however, complicate the use of DMPO derivatives: these include the formation of spurious ESR signals due to non-radical reactions such as hydrolysis, decomposition, self-condensation, and so on.³ The development of better spin traps remains an attractive research area to expand the reliable investigation of free radicals as well as the detection of a slight amount of radical species.

In previous report, we described a new synthetic route of 1,1,3trimethyl-1*H*-isoindole N-oxide (TMINO, **1**), giving **1** in nine steps and 28% yield from 2-chlorobenzoic acid (Fig. 1).^{4,5} We now report the first synthesis of TMINO derivative bearing trifluoromethyl group, 1,1-dimethyl-3-(trifluoromethyl)-1*H*-isoindole N-oxide (3-TF-TMINO, **2**) and the evaluation of its spin trapping ability in the presence of *i*-amyloxy radical.

The synthesis was summarized in Scheme 1. Esterification of 2bromobenzoic acid (**3**) with MeOH in the presence of a catalytic

amount of sulfuric acid gave ester **4** in 99% yield. The methylation of **4** with methylmagnesium iodide and subsequent dehydration under acidic conditions afforded a 82% yield of olefin 5. After olefin 5 was converted into Grignard reagent, the treatment with DMF led to the corresponding aldehyde **6** in 74% yield after distillation. Pure alcohol 7 was obtained in 93% yield using trimethyl(trifluoromethyl)silane in the presence of a catalytic amount of tetrabutylammonium fluoride, followed by acid-catalyzed TMS deprotection.⁶ Unfortunately, the next oxidation step gave complex mixture in the case of Jones reagent, PCC reagent, and sulfur trioxide pyridine complex reagent. Finally, Dess-Martin oxidation led to ketone 8, which decomposed to complex mixture for one month.⁷ Avoiding the decomposition of **8**, crude ketone **8** was immediately treated with four equivalents of hydroxylamine

Scheme 1. Reagents and conditions: (a) cat. H_2SO_4 , MeOH, reflux, 99%; (b) MeMgI, Et₂O, rt; (c) 20% H_2SO_4 -AcOH, 82% in two steps; (d) Mg THF, reflux, then, DMF, rt, 74%; (e) cat. TBAF, TMSCF₃ THF, rt, then, 3 N HCl, 93%; (f) Dess-Martin oxidation, CH₂Cl₂; (g) NH₂OH, AcONa, EtOH, 80 °C, 70% in two steps.

^{*} Corresponding author. Tel.: +81 (0)238 26 3117; fax: +81 (0)238 26 3413. *E-mail address*: hatano@yz.yamagata-u.ac.jp (B. Hatano).

^{0040-4039/\$ -} see front matter \circledcirc 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.07.161

under basic conditions. Surprisingly, final 3-TF-TMINO (2) was isolated in 70% yield instead of the expected oxime.⁸⁻¹⁰

This transformation in the final step is thought to proceed through the pathway shown in Scheme 2. (a) *N*,*O*-Acetal **9** was formed by the reaction of **8** with hydroxylamine.¹¹ (b) *N*,*O*-Acetal **9** was transformed to isoindole **10** by reverse-Cope cyclization.^{5,12} (c) The proton at the hydroxylamine was transferred to give the intermediate **11**. (d) The subsequent dehydration of **11** gave 3-TF-TMINO (**2**).

Scheme 2. Plausible reaction pathway for N-oxide 2 from ketone 8.

Figure 2. ESR spectra of spin adducts of **1** (a) and **2** (b) in the presence of *i*-amyloxy radical. Spectra obtained by UV photolysis of a solution of *i*-amyl nitrite (40 mM) in the presence of N-oxide (2.0 mM) in benzene. Spectrometer settings: microwave power = 4.00 mW at about 9.2 GHz, magnetic field modulation width = 1.0 G at 100 kHz, time constant = 0.30 s, sweep time = 40.0 s, center field = 3370.0 G, and sweep width = $\pm 25.0 \text{ G}$, temperature = $25 \degree$ C.

Table 1

Relative ESR signal intensity of radical adduct^a

Radical adduct		Time (min)						
	0	20	40	60	80	100	140	
TMINO 3TF-TMINO	1 1	0.85 1	0.67 1	0.47 1	0.28 0.99	0.12 0.99	0.02 0.99	

^a The measurement conditions are the same as those in Figure 2. The relative intensity was the ratio of intensity for each minute to starting intensity of the *i*-amyloxy adducts of **1** or **2**.

We next demonstrated the spin-trapping experiment using 1 and **2**. When the solution of **1** with *i*-amyl nitrite was irradiated with UV light for 35 s at room temperature, a strong ESR signal exhibiting nitrogen hyperfine interactions a(N) of 13.2 G was observed along with a small unknown signal (Fig. 2a).¹³ In contrast to the result of **1**, similar treatment of **2** gave only a single spectrum, consisting of three groups of 1:3:3:1 quarters (Fig. 2b). The ESR absorption profile was similar to those of radical adducts generated by the reaction of 2TF-DMPO with *n*-butyl nitrite, *i*-butyl nitrite, and *i*-amyl nitrite.¹⁴ The hyperfine splitting constants (hfsc) obtained were a(N) = 11.7 and a(F) = 3.5 G. Furthermore, the *i*amyloxy radical adduct of 2 had extremely long-half life compared to that of **1**; the relative ESR signal intensity of *i*-amyloxy radical adduct of 2 hardly decays within 140 min (Table 1). When stored at room temperature in the dark, the radical adduct of 2 had a half-life of three days.

In conclusion, we achieved the first synthesis of isoindole nitrone bearing trifluoromethyl group, 1,1-dimethyl-3-(trifluoromethyl)-1*H*-isoindole N-oxide (3-TF-TMINO, **2**), in an overall yield of 39% starting from readily available 2-bromobenzoic acid (**3**) in seven steps. Furthermore, **2** trapped *i*-amyloxy radical, giving only a stable radical adduct of **2**, efficiently. More detailed studies of the synthesis of functional spin trap reagents and their utilization are now in progress.

Acknowledgment

This work was supported by a Grant-in-Aid for Young Scientists (B) (No. 21750165) from the Japan Society for the Promotion of Science (JSPS).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.07.161.

References and notes

- Halliwell, B.; Grtteridge, J. M. Free Radicals in Biology and Medicine; Oxford: UK, 1989.
- Janzen, E. G.; Haire, D. L. In Advances in Free Radical Chemistry; Tanner, D. D., Ed.; JAI Press Inc.: Greenwich, CT, 1990; pp 253–295.
- (a) Bandara, B. M. R.; Hinojosa, O.; Bernofsky, C. J. Org. Chem. **1994**, 59, 1642; (b) Barasch, D.; Krishna, M. C.; Russo, A.; Katzhendler, J.; Samuni, A. J. Am. Chem. Soc. **1994**, *116*, 7319; (c) Janzen, E. G.; Zhang, Y. K.; Arimura, M. Chem. Lett. **1993**, 497; (d) Janzen, E. G.; Jandrisits, L. T.; Shetty, R. V.; Haire, D. L.; Hilborn, J. W. Chem. Biol. Interact. **1989**, *70*, 167; (e) Makino, K.; Imaishi, H.; Morinishi, S.; Hagiwara, T.; Takeuchi, T.; Murakami, A.; Nishi, M. Free Radical Res. Commun. **1989**, 6, 19.
- Synthesis and spin trapping properties of 1, see: (a) Bottle, S. E.; Micallef, A. S. Org. Biomol. Chem. 2003, 1, 2581; (b) Bottle, S. E.; Hanson, G. R.; Micallef, A. S. Org. Biomol. Chem. 2003, 1, 2585.
- 5. Hatano, B.; Sato, H.; Ito, T.; Ogata, T. Synlett 2007, 2130.
- 6. Analytical and spectral data of alcohol **7**: IR (neat): $v_{max} = 3400$, 2978, 1643, 1491, 1450, 1375, 1269, 1171, 1128, 1057, 914, 766 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, 1H, *J* = 7.8 Hz), 7.39–7.34 (m, 2H), 7.21–7.19 (m, 1H), 5.41 (q, 1H, *J* = 6.8 Hz), 5.30 (dq, 1H, *J* = 1.7, 1.5 Hz), 4.91–4.90 (m, 1H), 2.50 (br, 1H), 2.06 (dd, 3H, *J* = 1.5, 1.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 144.6, 143.8, 130.8, 129.2, 128.2, 127.5, 127.2 (q, *J* = 2 Hz), 124.6 (q, *J* = 281 Hz), 116.6, 68.9 (q, *J* = 32 Hz), 25.6; ¹⁹F NMR (470 MHz, CDCl₃) δ –77.3 (d, *J* = 6.8 Hz); HRMS (ESI) calcd for C₁₁H₁₀F₃O₁: 215.06837 [M–H]⁻; found: 215.06860.

- 7. Analytical and spectral data of ketone **8**: IR (neat): $v_{max} = 1726$, 1191, 1148, 934, 768 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.65 (d, 1H, *J* = 7.8 Hz), 7.57 (dd, 1H, *J* = 7.5, 7.4 Hz), 7.41 (dd, 1H, *J* = 7.8, 7.4 Hz), 7.38 (d, 1H, *J* = 7.5 Hz), 5.19 (dq, 1H, *J* = 1.5, 1.5 Hz), 4.82–4.81 (m, 1H), 2.11 (dd, 3H, *J* = 1.5, 1.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 185.6 (q, *J* = 35 Hz), 145.4, 144.8, 132.9, 131.0, 129.0 (q, *J* = 2 Hz), 128.8, 127.3, 117.0, 116.0 (q, *J* = 291 Hz), 23.3; ¹⁹F NMR (470 MHz, CDCl₃) δ –72.8; Anal. Calcd for C₁₁H₉F₃O: C, 61.68; H, 4.24. Found: C, 61.68; H, 4.18.
- 8. Analytical and spectral data of 3-TF-TMINO (**2**): mp 71.6–73.1 °C; IR (neat): $v_{max} = 3398, 1535, 1479, 1200, 1149, 974, 763, 663 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta$ 7.58–7.55 (m, 1H), 7.44–7.40 (m, 2H), 7.31–7.28 (m, 1H), 1.60 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 143.0, 130.9 (q, *J* = 35 Hz), 129.0, 128.8, 128.3, 120.9, 120.1 (q, *J* = 2 Hz), 120.0 (q, *J* = 271 Hz), 80.3, 24.8; ¹⁹F NMR (470 MHz, CDCl₃) δ –65.7; HRMS (ESI) calcd for C₁₁H₁₁F₃N₁O₁: 230.07927 [M+H]⁺; found: 230.08007.
- 9. Neither remarkable by-product nor decomposed product of **8** was observed in this reaction.
- 10. The purified **2** was successfully stored under nitrogen at room temperature, with little or no decomposition, for a period of at least six months.
- In the reaction of α,α,α-trifluoroacetophenone with hydroxylamine, the corresponding N,O-acetal intermediate was observed, see: Ritchie, C. D. J. Am. Chem. Soc. **1984**, 106, 7187.
- (a) Cooper, N. J.; Knight, D. W. Tetrahedron 2004, 60, 243; (b) Knight, D. W.; Leese, M. P.; De Kimpe, N. Tetrahedron Lett. 2001, 42, 2597.
- 13. Generally, *i*-amyl nitrite disproportionates by UV photolysis to *i*-amyloxy radical and nitric oxide radical ('NO). The two kinds of radical adducts of **1** were observed in the presence of nitric oxide radical ('NO), see: Ref. 4b.
- (a) Janzen, E. G.; Zhang, Y.-K.; Arimura, M. J. Org. Chem. 1995, 60, 5434; (b) Janzen, E. G.; Zhang, Y.-K. U.S. Patent 5 405 967, 1995.